以下是我为大家精选的一篇有关“一元二次方程教案”的文章,请根据自己的需要和情况灵活运用这些信息。教案课件是老师工作中的一部分,老师还没有写的话现在也来的及。教案是完整课堂教学的保障。
一元二次方程教案(篇1)
学习一元二次方程的解法,最终是要落实到它的应用上。本节课通过学习列一元二次方程解应用题,解决两类问题:面积问题及增长率问题,使学生体验“知识来自实践,又作用于实践”的辩证唯物主义观点。史老师围绕这一知识应用开展课堂教学。现就本节课的课堂教学评价如下:
首先,从教学目标制订来看,本节课的教学目标是掌握列一元二次方程解应用题的一般步骤:审--设--列--解--验--答;学会列一元二次方程解应用题。学会寻找增长率问题中的等量关系;了解数学源于生活,从数学的无穷奥秘,感受生活的丰富多采。培养学生理解问题、解决问题的能力。
这一目标比较全面、具体、适宜,能从知识、能力、思想情感等几个方面确定,并且知识目标有量化要求,能力、思想情感目标要有明确要求,体现学科特点。同时确定的教学目标,能以大纲为指导,体现年级、单元教材特点,符合学生年龄实际和认识规律,难易适度。从目标达成来看,教学目标体现在每一教学环节中,教学手段都紧密地围绕目标,为实现目标服务。
史老师对这一节课的知识教授比较准确科学,教师在教材处理上做了一些文章,从课前学习配备一定量的复习练习,回忆巩固列方程解应用题的一般步骤,通过模仿练习,提升学习的量,并在教法选择上突出了重点,突破了难点,抓住了关键。
(一)看教学思路设计。
教学思路是教师上课的脉络和主线,它是根据教学内容和学生水平两个方面的实际情况设计出来的。它反映一系列教学措施怎样编排组合,怎样衔接过渡,怎样安排详略,怎样安排讲练等。
因此史老师在教学思路设计上符合教学内容实际,符合学生实际,并设计合作与探究给学生以新鲜的感受,在课堂上教学思路实际运作的效果比较好。
(二)看课堂结构安排。
教学思路侧重教材处理,反映教师课堂教学纵向教学脉络,而课堂结构侧重教法设计,反映教学横向的层次和环节。它是指一节课的教学过程各部分的确立,以及它们之间的联系、顺序和时间分配。课堂结构也称为教学环节或步骤。
1、从教学环节的时间分配看,本节课前面时间安排多,内容多,后面时间少,内容密度大,讲与练时间搭配还不够合理,讲地多,练得少。
2、从教师活动与学生活动看,占用时间过多,学生活动时间不够多。
3、从学生的个人活动时间与学生集体活动时间的分配看,学生个人活动,小组活动和全班活动时间分配不够合理,集体活动过多,学生个人自学、独立思考、独立完成作业时间不够。
4、从优差生活动时间看,学生情况我们不是很熟悉,难以判断。
5、从非教学时间看,史老师控制较好,基本没有浪费宝贵的课堂时间的现象。
什么是教学方法?它包括教师“教学活动方式,还包括学生在教师指导下”“学”的方式,是“教”的.方法与“学”的方法的统一。
一种好的教学方法总是相对而言的,它总是因课程,因学生,因教师自身特点而相应变化的。也就是说教学方法的选择要量体裁衣,灵活运用。本节课采用任务驱动下的学生自主学习与教师辅导相结合的模式,设计思路较好,具体实施时仍旧感觉到传统教法占优。
现代化教学呼唤现代化手段。“一支粉笔一本书,一块黑板一张嘴”的陈旧单一教学手段应该成为历史。本节课适当运用了投影仪、计算机等现代化教学手段,提高了课堂的容量。
1、看板书。
字迹工整美观,板画娴熟。因书写地方少,体现不出教师的真实水平。
2、看教态。
据心理学研究表明:人的表达靠55%的面部表情+38%的声音+7%的言词。教师课堂上的教态应该是明朗、快活、庄重,富有感染力。仪表端庄,举止从容,态度热情,热爱学生,师生情感交融。这一方面对我们每一个教师都应该加强。
3、看语言。
教学也是一种语言的艺术。教师的语言有时关系到一节课的成败。史老师语言准确清楚,说普通话,精当简炼,有启发性。教学语言的语调高低适宜,快慢适度,富于变化。
4、看教法。
史老师运用教具,操作投影议、微机等比较熟练。
课堂效果评析包括以下几个方面。一是教学效率高,学生思维活跃,气氛热烈。二是学生受益面大,不同程度的学生在原有基础上都有进步。知识、能力、思想情操目标达成。三是有效利用45分钟,学生学得轻松愉快,积极性高,当堂问题当堂解决,学生负担合理。应该说本节课基本达到了预期的教学效果。
一元二次方程教案(篇2)
1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:
(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;
(2)能根据具体问题的实际意义,检验结果是否合理;
(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;
(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:
重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
一元二次方程教案(篇3)
教材分析:1.本节以生活中的实际问题为背景,引出一元二次方程的概念,让学生掌握一元二次方程的特点,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本节内容是在前面所学方程、一元一次方程、整式、方程的解的基础上进行学习,也是后面学习二次函数的一个基础。
2.这些概念是全章后继内容的基础。
3.让学生体会数学来源于生活,又服务于生活的基本思想。
学情分析:1.授课班级学生基础较差,学生成绩参差不齐,差生较多。教学中应给予充分思考的时间,注意讲练结合,以学生为本,体现生本课堂的理念。
2.该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的 优势,从而充分调动学生主动性和积极性,使课堂气氛活跃,让学生在愉快的环境中学习。
3.作为该班的班主任,同时又担任该班的数学教学,对学生学习情况有比较深入地了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性,在练习题的设计上要针对学生的差异采取分层设计的方法,着重加强对学生的双基训练。
1.理解一元二次方程的概念,能判断一个方程是一元二次方程。
2.掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
二 过程与方法:
1.引导学生分析实际问题中的数量关系,组织学生讨论,让学生类比、抽象出一元二次方程的概念 。
2.培养独立思考,合作交流学,分析问题,解决问题的能力。
三 情感态度与价值观:
1.培养学生主动探究知识、自主学习和合作交流的意识.
2.激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.
3.让学生体会数学来源于生活,又服务于生活的基本思想,从而意识到数学在生活中的作用。
教学重点:一元二次方程的概念及一般形式,利用概念解决实际问题。
2.正确识别一般式中的“项”及“系数”.
3.一元二次方程的特点,如何判断一个方程是一元二次方程。
1.问题1:广安区为增加农民收入,需要调整农作物种植结构,计划无公害蔬菜的产量比翻一番,要实现这一目标,和20无公害蔬菜产量的年平均增长率是多少?(通过放幻灯片引入)
设无公害蔬菜产量的年平均增长率为x,20的产量为a(a≠0),翻一番的意思就是a变为2a,那么
(1)用代数式表示20的产量;
(2)年蔬菜的产量比年增加了2x,对吗?为什么?你能用代数式表示出来吗?
2.通过幻灯片引入情境,提出问题:
问题2:广安市政府在一块宽200m、长320m的矩形广场上,修筑宽相等的三条小路(两条纵向、一条横向,纵向与横向垂直),把矩形空地分成大小一样的6块,建成小花坛,要使花坛的总面积为57000m2,问小路的宽应为多少?
设小路的宽为x m,则横向小路的面积如何表示?纵向的呢?重叠部分的面积是多少?小路所占的面积用x的代数式如何表示?
这个问题的相等关系是什么?
谁还能换一种思路考虑这个问题?
把6个小花坛拼起来是一个多长多宽的矩形,由此你会得出什么样的方程?
比较一下,哪种方法更巧妙?
3.通过幻灯片引入情景。问题3:广安重百商场销售某品牌服装,若每件盈利50元,则每月可销售100件。若每件降价1元,则每月可多卖出5件,若每月要盈利6000元,则商场决定每件服装降价多少?
设每件降价x元,则现在的盈利为(50-x)元,降价后销售量为(100+5X)件。可列方程为:(50-x)(100+5X)=6000
一元二次方程教案(篇4)
一元二次方程教学设计
海门市海南中学 顾 健
学习目标:
1.类比一元一次方程,自主探究一元二次方程的定义.2.知道一元二次方程的一般形式和方程的解,会解简单方程.3.经历观察、思考、讨论等探究过程,发展自主学习的能力,感悟“从特殊到一般”“转化”“类比”等数学思想方法,积累数学活动经验.4.通过合作、交流,进一步学会互助、共享,并与同伴得到共同提高.教学重难点:一元二次方程的定义和一般式,会解简单方程.教学过程:
一、在复习回顾中,引导学生类比一元一次方程自主探究一元二次方程定义 1.自主回顾
已知矩形的长比宽大1厘米
问题(1)若矩形的周长是6厘米,求宽。 你会求解吗?你准备怎么做?
问题(2)若矩形的面积是6平方厘米,求宽。 你会求解吗?你准备怎么做? 2.类比归纳
问题(1)中的等式你学过吗?是什么方程?你是怎么知道的?(化简整理) 你能回忆一元一次方程的定义吗?(学生补充) 你知道一元一次方程的一般式吗? 追问:a为什么不等于0?b呢? 还学习了一元一次方程的哪些内容?
问题(2)中的等式你认识吗?你是怎么知道的? (一个未知数、最高次是
2、整式方程) 你能归纳一元二次方程的定义吗? 3.你能举出一些一元二次方程的例子吗? (转化后介绍项、系数、常数) 4.你能归纳一元二次方程的一般式吗?
追问:a为什么不等于0?b呢?C呢?(正确寻找a、b、c)
二、在合作交流中,引导学生分享方法,归纳方程解法 1.什么是方程的解?(能使等号两边相等的未知数的值)
什么是一元二次方程的解?
2.如何解一元一次方程?(形成x=a)它的解有几个?
3.猜想:如何解一元二次方程?尝试解黑板上的一元二次方程。 (先独立完成2分钟,再在小组内交流) 4.展示方法,你的依据是什么?
5.归纳方法,比较一元二次方程的解与一元一次方程的区别与联系。 (降次思想、转化思想)
三、共同反思,小结提升
1.你是如何理解一元二次方程的定义的? 2.你对一元二次方程中的a、b、c有怎样的认识?
3.一元二次方程的解有怎样的特点?今天你学会了哪些方法解一元二次方程? 4.通过今天对一元二次方程的学习,你积累了哪些重要的学习方法和经验?
一元一次方程教学设计
二元一次方程组教案设计模板
认识一元一次方程教学设计
一元二次方程,导学案
二元一次方程教案模板
一元二次方程教案(篇5)
1、已知方程 x2—ax—3a=0的一个根是6,则求a及另一个根的值。
2、有上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有根简洁的关系?
3、有求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1= ,x2= 、观察两式左边,分母相同,分子是—b+√b 2—4ac与—b—√b 2—4ac。两根之间通过什么计算才能得到更简洁的关系?
解下列方程,并填写表格:
观察上面的表格,你能得到什么结论?
(1)关于x的方程 x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1, x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
(1)关于x的方程x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=—p, x1、 x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)
(2)形如的方程ax2+bx+c=0(a≠0),可以先将二次项系数化为1,再利用上面的结论。
例3:已知一元二次方程的两个根是—1和2,请你写出一个符合条件的方程、(你有几种方法?)
例4:已知方程 的一个根是 ,求另一根及k的值、
1、已知方程 的一个根是1,求另一根及m的值、
2、已知方程 的一个根为 ,求另一根及c的值、
1、已知关于x的方程 的一个根是另一个根的2倍,求m的值、
2、已知两数和为8,积为9,求这两个数、
3、 x2—2x+6=0的两根为x1,x2,则x1+x2=2,x1x2=6、是否正确?
1、根与系数的关系:
1、不解方程,写出下列方程的两根和与两根积。
2、 已知方程x2—3x+m=0的一个根为1,求另一根及m的值、
3、 已知方程x2+bx+6=0的一个根为—2求另一根及b的值、
一元二次方程教案(篇6)
教学目标:
(一)知识技能目标:
1初步感受有些事件的发生是不确定的,有些事件的发生是确定的。
2会区分生活中的必然事件、不可能事件和随机事件。
3在经历猜测、试验、收集与分析试验结果的过程中,让学生学会合作交流。
(二)过程方法目标:
通过实际情境让学生认知生活中有确定事件和随机事件,结合合作探索活动让学生建立数学知识模型并运用于生活、服务于生活。
(三)情感态度目标:
激发学生的探索精神与创造力,建立起学习数学的信心,感受数学的无限乐趣。
教学重点:
正确理解、区分生活中与数学中的必然事件、不可能事件和随机事件。
教学难点:
区分生活中的事件类型,做出合理决策。
教学过程:
一联系实际创设情境引入新课
1教师出示乒乓球,引出下例:
2某次国际乒乓球比赛中,中国选手甲和乙进入最后的决赛,那么该项比赛的
(1)冠军属于中国吗?
(2)冠军属于外国选手吗?
(3)冠军属于中国选手甲吗?
(通过学生熟悉而又简单的问题让学生感知生活中的现象,从而激发兴趣,引入新课)
3通过学生的回答引出课题《确定与不确定》
二感知生活中的确定与不确定
说一说:(1)生活中有哪些事情是我们确定的?
(2)生活中有哪些事情是我们不确定的?
(小组讨论,让学生联系生活,再次感知,从而进一步激发兴趣)
三建立数学知识模型(通过上述学生的举例感知生活中的确定与不确定事情,从而给出三种事件的概念,让学生更容易理解)
在特定条件下,有些事情我们事先能肯定它一定不会发生,这样的事情是不可能事件.
在特定条件下,有些事情我们事先能肯定它一定会发生,这样的事情是必然事件.
在特定条件下,生活中有很多事情事先无法确定它会不会发生,这样的事情是随机事件.
四知识理解把握本质
练习:下列事件中哪些是不可能事件,那些是必然事件,那些是随机事件?
1.抛掷一个均匀的骰子,6点朝上。
2.打开电视,它正在播广告。
3.小明家买彩票将获得500万元彩票大奖。
4.明天一定下雨。
5.妇幼保健院,下一个出生的婴儿是女孩子。
6.1+3>2
7.三角形三个内角的和是180度。
8.如果a,b都是有理数,那么ab=ba
(对于概念的学习,要通过多次感知,不断强化,在初步感知概念后,要通过及时的辨别分析,真正认识概念的本质)
(通过第七、八两小题让学仿照再举几例,使学生认识到以前所学习的大量的.公式、法则等一般来说都是必然事件。)
五分组学习,其乐融融
1小组竞赛:
分别举出生活的必然事件、不可能事件和随机事件(将全班同学分成三组,分别举出必然事件、不可能事件和随机事件,通过活动更加深了对概念的理解,也调动了学生的兴趣)
2数学实验室:
摸球游戏:规则:共有15个白球,5个黑球.每次只能摸5个球,摸到5个黑球为一等奖,依次类推.
(1)学生动手摸奖,体会中奖的可能性,感受到身边的事情.
(2)设计游戏:你能仿照上面的游戏自己设计几个游戏吗?(一个是必然事件,一个是不可能事件,一个是随机事件)
(联系生活实际,体会生活中处处有数学,学有用的数学)
(用学生非常感兴趣的摸奖,既能加深对三种事件的理解,又能调动学生的积极性,活跃课堂气氛,同时也为下面的可能性埋下伏笔)
六故事:《田忌赛马》
齐王和田忌都有上等马、中等马和下等马3种,可是田忌的各个等级的马都比齐王同等级的马差一些?
想一想:田忌和齐王赛马是否一定会输?为什么?
七观察分析探究
改变开头例子中的条件:
(1)如果进入决赛的是两个外国人问题如何回答?
(2)如果进入决赛的一个中国人,一个外国人问题又如何回答呢?
通过例子发现必然事件,不可能事件,随机事件三者在一定条件下可以相互转化,让学生体会概念中的“特定条件”。
八小结:通过本节课的学习你有什么感受?
九课后练习:
1用适当的语言来表示下列词语所反映的事件发生情况?
东边日出西边雨?十拿九稳?大海捞针?海枯石烂
2小名、小芳和小圆每人各买一瓶饮料,在供购买的20瓶饮料中,有两瓶已经过了保质期.请根据以上这段话,设计一个不可能事件,一个必然事件,一个随机事件?
十板书设计:
确定与不确定
不可能事件
确定事件
必然事件
随机事件---不确定事件---可能会发生,也可能不会发生
三种事件在一定条件下可以相互转化
一元二次方程教案(篇7)
一、教材分析:
1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:
(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;
(2)能根据具体问题的实际意义,检验结果是否合理;
(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;
(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:
重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:
1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:
本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:
活动1复习回顾解决课前参与
活动2封面设计问题的探究
活动3草坪规划问题的延伸
活动4课堂回眸
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
活动1复习回顾解决课前参与
由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。
活动2封面设计问题的探究
通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。
活动3草坪规划问题的延伸
放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。
活动4课堂回眸
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
一元二次方程教案(篇8)
第一课时
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.态度、情感、价值观
4.通过生活学习数学,并用数学解决生活中的'问题来激发学生的学习热情.
重难点关键
1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.
教学过程
一、复习引入
学生活动:列方程.
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.
整理、化简,得:__________.
问题(2)如图,如果 ,那么点c叫做线段ab的黄金分割点.
如果假设ab=1,ac=x,那么bc=________,根据题意,得:________.
整理得:_________.
问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.
整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
一元二次方程教案(篇9)
一元二次方程教学设计
教学任务分析
知识技能
1、理解一元二次方程的概念.2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和
深刻性.3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力.
在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.1、培养学生主动探究知识、自主学习和合作交流的意识.
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.教学思考
教学目标
解决问题
情感态度
重点 一元二次方程的概念及一般形式.
1、由实际问题向数学问题的转化过程.
难点
2、正确识别一般式中的“项”及“系数”.教学流程安排
活动流程图
活动1 创设情境 引入新课
活动2 启发探究 获得新知
活动3 运用新知 体验成功
活动4 归纳小结 拓展提高
活动5 布置作业 分层落实
活动内容和目的
复习一元一次方程有关概念;通过实际问题引入新知。
通过类比一元一次方程的概念和一般形式,让学生获得一元二次方程的有关概念。
巩固训练,加深对一元二次方程有关概念的理解。
回顾梳理本节内容,拓展提高学生对知识的理解。
分层次布置作业,提高学生学习数学的兴趣。
教学过程设计
问题与情景
「活动1」
问题1:
2008年奥运会将在北京举办,许多大学生都希望为奥运奉献自己的一份力量。现组委会决定对高校奥运志愿者进行分批培训,由已合格人员培训第一轮人员,再由前面所有合格人员培训第二轮人员,以此类推来完成此次培训任务。
某高校学生李红已受训合格,成为一名志愿者,并由她负责培训本校志愿者。若每轮培训中每个志愿者平均培训x人。
(1)已知经过第一轮培训后该校共有11人合格, 请列出满足条件的方程:
(2)若两轮培训后该校共有121人合格,你能列出满足条件的方程吗?
问题2:
有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个
2无盖方盒.如果要制作的无盖方盒底面积为3600cm,那
通过多媒体播放视频短片,引入情境,提出问题.在第(1)问中,通过教师引导,学生列出方程,解决问题.
在第(2)问中,遵循刚才解决问题的思路,由学生思考,列出方程.
活动中教师应重点关注:
学生对题目的理解,可举例,由特殊到一般,帮助学生理解题意,从而引导师生行为
通过创设情境,引导学生复习一元一次方程的概念和一般形式,为后面学习一元二次方程的有关内容做好铺垫.
通过解决实际问题引入一元二次方程的概念,同时可提高学生利用方程思想解决实际问题的能力.
设计意图 么铁皮各角应切去多大的正方形?
问题3:
我校为丰富校园文化氛围,要设计一座2米高的人体雕像,使雕像的上部(腰以上)与全部高度的乘积,等于下部(腰以下)高度的平方,求雕像下部的高度 .
问题与情景
「活动2」
1、一元二次方程的概念:
等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。
眼疾口快:
请抢答下列各式是否为一元二次方程:
学会列出满足
条件的方程
通过解决实通过多媒际问题引入一元体演示,把文字二次方程的概转化为图形,帮念.
助学生理解题
意,从而由学生
独立思考,列出
满足条件的方
程.
此题是与实让学生通过际问题结合的题数形结合的方目,通过演示高法,转化实际问度关系,帮助学题,从而得到方生理解题意,从程,为引入一元而列出符合题意二次方程的概念的方程。
做好准备.
师生行为 设计意图
让学生充分由以上问题得感受所列方程的到3个方程,
特点,再通过类
比的方法得到定由学生观察归义,从而达到真纳这3个方程的正理解定义的目特征,给出名称的.
并类比一元一
次方程的定义,
得出一元二次
方程的定义.活动中教
师应重点关注:
这组练习目(1)
引导学
的在于巩固学生生观察所列对一元二次方程出的3个方定义中3个特征程的特点;
的理解.
2、
2、一元二次方程的一般式:
(2)
让学生
类比前面复习过的一元一次方程定义得到一元二次方程定义.(3)
强调定
义中体现的3个特征:
①整式;②一元;③2次.
由学生以抢答的形式来完成此题,并让学生找出错误理由.
其中(1)~(6)题较为简单,学生可非常容易给出答案;而(7),(8)两题有一定难度,(7)需要进行分类讨论.
此活动中,教师应注意对学生给出的答案作出点评和归纳.
引导学生类比一元一次
(7),(8)两个题目的设置,目的在于进一步加深学生对定义的掌握,尤其结合字母系数,加大题目难度,提高学生对变式的理解能力.
此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.
此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的.
3、 方程的一般形式,总结归纳一元二次方程的一般形式及项、问题与情境
试一试:
下面给出了某个方程的几个特点:
(1)它的一般形式为
(2)它的二次项系数为5;
(3)常数项是一次项系数的倒数的相反数。
「活动3」
例1.天津四中为树立学生的团结、拼搏精神,组织了一次篮球比赛,参赛的每两个队之间都要比赛一场,依据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,请问全校有多少个队参赛?(列方程并整理成一般形式)
系数的概念.师生
行为
先由教师在大屏幕上显示问题,由学生经过思考,给出符合条件的答案,全体学生进行判断是否正确.
在此环节可设置一个小游戏,让答对学生给出类似条件,找其他同学回答给出的新问题,让大家进行判断给出的方程是否正确.
此环节中,教师应注意板书学生给出的方程要,并且及时引导学生不要给出类似的条件.
此题为与实际问题结合的题目,让学生思考解决问题的方法,列出满足题意的方程.
设计意
图
此题设置的目的在于加深学生对一般形式的理解
采取游戏的形式以提高学生对数学学习的兴趣,参与课堂活动的积极性,还可鼓励学生课下继续以合作的形式进行学习.
整理一元二次方程的一般形式为本节课的重点,由实际问题出发列方程为本节的难点,所以在此设置此题,加强巩固练习.
由篮球比赛引入题目,可激发学生兴趣,引起学生关注.
以此题为例,教师板书整理一元二次方程的过程,让学生学会如何整理任意一元二次方程的一般形式,并能准确找到各项系数.
教师在此活动中应重点关注:
(1)由一个学生列出方程,并解释解题方法,教师进行引导,点评,引起 其他学生的关注,认同.
(2)教师在归纳点评过程中,应注意把两队只打一场比赛解释清楚,以便学生理解题意.
(3)整理一般形式后,教师应强调整理过程中应用到的等式变形方法,如去括号,移项,合并同类项,去分母等.
(4)让学生指出各项系数时,教师强调系数须带符合.
此题有在实际生活中应用的意义,通过此题让学生理解比赛赛制安排原则.
问题与情境
小试牛刀:
你能否把下列方程整理成一般形式?
例
2、当m取何值时,方程
是关于x的一元二次方程?
考考你:
判断下列关于x的方程是否是一元二次方程:
( 为有理数);
「活动4」
1.问题:
本节课你又学会了哪些新知识?
师生行为 巩固练习学生整理一般形式的方法,并准确找出各项系数.此环节可找学生口答结果.此题是字母系数问题,由学生思考解题过程,让学生讲解此题,教师进行总结点评.大屏幕显示解题过程.
此题由学生思考,讨论,并由学生给出结果并进行解释.
此活动过程中,教师应重点关注:
(1)此题目在上一题的基础上继续加大难度,第(1)题须强调先进行整理,再考虑二次项系数是否为零;第(2)题须先求出m值,再代入二次项系数中,验证是否为0,得到结果.
(2)学生解答过程中,教师设计意图 让学生落实将刚才教师板书的整理一般形式的过程,再次突出本节课的重点内容
此题为一元二次方程概念中常见题型,通过此题让学生加深对定义和一般形式的理解,为其他字母系数问题做好准备。
此题仍涉及字母系数问题,难度加大,以达到让学生掌握本节课重难点的目的.
通过此题让学生掌握解此类字母系数题目的方法,以及整理一般形式对于解一元二次方程题目的重要性
小结反思
2.思维拓展:
若方程x2m+n +xm-n +3=0是关于x的一元二次方程,求m,n的值。
「活动5」
课后作业:
(A)教科书第98页习题第
1、
2、
5、
6、7题.
(B)请根据所给方程:
(16-2x)(10-2x)=112,
把学生整理的一般形式书写在黑板上,以便全体学生理解.学生反思本节课中学到的知识,总结活动中的经验。
小结时,教师应重点关注:
(1)学生是否能抓住本节课的重点;
(2)学生是否掌握一些基本方法。
此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。
让学生再思考,若题目
中“+”变成“-”时,如何解决,留作课下思考。
(A)组题目为巩固型作业,即必做题。
(B)组题目为思维拓展型作业,即为学有余
中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。
此题需进行分类讨论,开拓学生思维,体现数学的严谨性。
分层次布置作业,尊重学生的个体差异,激发学生学习积极性。
联系实际,编写一道应用题
( 要求题目完整,题意清楚,不要求解方程)。
教学设计说明
力的学生设置。
本节课是一元二次方程的第一课时,通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题。在教学过程中,注重中难点的体现。
在本节课的活动1中,通过实际问题引入学生熟悉的一元一次方程,让学生掌握利用方程解决问题,从而顺利过渡到后面的问题。活动2中让学生观察活动1中得到的3个方程,并通过类比一元一次方程的定义和一般形式,从而获得本课的新知识。活动3意在强化学生所学知识,并运用到实际问题中去。
教学过程中,应随时注意学生们出现的问题,及时进行反馈,使学生熟练掌握所学知识。
幼儿教师教育网的幼儿园教案频道为您编辑的《一元二次方程教案通用九篇》内容,希望能帮到您!同时我们的一元二次方程教案专题还有需要您想要的内容,欢迎您访问!