古人云,工欲善其事,必先利其器。身为一位优秀的幼儿园的老师我们都希望自己能教孩子们学到一些知识,大部分老师为了让学生学的更好都会事先准备好教案,教案有助于老师在之后的上课教学中井然有序的进行。那么怎么才能写出优秀的幼儿园教案呢?以下是小编精心收集整理的一元一次方程教案,带给大家。有需要的朋友就来看看吧!
一元一次方程教案 篇1
一元一次方程教学反思范文一:
义务教育课程标准实验教科书(人教版)的七年级数学上册的第二章《一元一次方程》,其主要学习目标为:1、经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型。2、了解解方程的基本目标,熟悉一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴含的化归思想。3、能够“找出实际问题中的已知数和δ知数,分析它们之间的关系,设δ知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想。4、通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。显而易见,以方程为工具分析问题、解决问题(即建立方程模型)是全章的重点和难点。
新课程标准教材不仅考虑数学自身的特点,还遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
本教科书是以一元一次方程的解法为主线,χ绕合并、移项、去分母、去括号几大步骤依次展开的,并把解决各种实际问题也逐一分散到这四大类型中,这样看起来,线索明朗,难点分散,有利于减轻学生的学习负担,其实不然,教学实践证明一元一次方程的解法,对学生来说并不很难,除了由于不细心造成符号错误,去分母©项问题,教学中并û有遇到多大阻碍,而对于利用一元一次方程去解决实际问题则是学生最感头痛之处。如何理清问题中的基本数量,如何找出相等关系列方程,往往使学生们抓耳挠腮,束手无策。所以像本章的知识显得系统性不强,不利于师生的引生的引导和探索,难以让学生体会建立数学模型的思想,不利于提高分析问题、解决问题的能力。
我在教学中认识到这一点,就在七年级两个班中进行对比实验:(1)班按照新课程标准教材编排顺序进行教学,(2)班则打破编排顺序,先集中学习一元一次方程的解法,然后再讨论其应用。并把实际问题按照问题情景进行分类:和(差)倍问题、工程问题、行程问题、浓度问题、等积变形问题、销售中的盈亏问题、商品打折问题、利率问题、方案设计问题等,引导学生探索ÿ类问题的本质,探究其内在联系,构建模型。
本章学习结束后,我们分别对一元一次方程的解法和应用进行对比测试。测试结果表明:对一元一次方程的解法,两种教学方式的效果相关无几,而对利用一元一次方程解决实际问题,两种教学方式的效果则有较大差异,打破教材编排顺序进行教学的(2)班成绩明显高于(1)班。按照标准教材编排进行教学,强调把握全部问题的通性通法,而七年级学校的学生大多数对此感觉难以理解和把握。(1)班学生大多反映解决实际问题时思·不清晰,对于不同的问题不知如何区别对待,而(2)班学生则反映遇到不同的实际问题,脑海中马上就显现出此类问题的通性通法,解决起来有章可循,真正体现建立数学模型的思想。
由此可见,教材ÿ一个问题情景的创设,ÿ一个知识篇章的教学模式的设计,是否具有科学性和有效性,是否适合各个地方各个层次的学生的学习心理特征,有待在教学实践中进一步的探索和研究。因此,我认为在此课程中,教学不是教“教科书”,而是经由“教科书”来教,即教科书不再是不可触犯的“圣经”,而是教学活动的参考依据,是教学活动展开的一种文本和载法。所以教师不能只执行教材,而应根据学生现有的知识基础,灵活地、创造性地利用教材,并且在课堂实施中根据学生的情况,灵活地调整并生成新的教学流程,使课堂处于不断的动态变化之中,这样才符合新课程的要求。
一元一次方程教学反思范文二:
方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:
本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(划线的两种情况出现最多);针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。
总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。
另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。
一元一次方程教案 篇2
删繁就简三秋树领异标新二月花
————“一元一次方程应用”教学实录及反思
临沂高都中学 王兴玲 列方程解应用题,是整个初中阶段数学教学的重点。因此,在教学中让学生掌握好它的原理、方法及实质则显得十分重要。在本节课教学过程中始终贯穿一条主线,即为什么要列方程、怎样列方程、怎样简捷地列方程等来阐明列方程的优越性、实质性及规律性。具体设计如下:
一、引言——故事的开端(为什么要列方程) 问题1:临沂高都中学组织学生参观小埠东橡胶坝和沂河大桥(多媒体展示小埠东橡胶坝的图片、沂河大桥的美图等)
师:在途中,我们遇到了一些有趣的数学问题希望同学们一起解决。在参观小埠东橡胶坝时,朋朋感叹道:“这座橡胶坝真是宏伟壮观,不知道刚才参观的沂河大桥有多长”?小波马上说:“我知道,小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米。”朋朋想:那么沂河大桥有多长呢?同学们能帮朋朋解决这个问题吗?
问题
1、小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,那么沂河大桥有多长?
生1:沂河大桥长为
(米)(师板演) 师:除了列算式外,还有别的方法吗? 生2:可以列方程
师:如果用列方程的方法来解,设哪个未知数为x? 生2:设沂河大桥的长为x米。
师:根据怎样的相当关系来列方程?方程的解是多少?
生2:根据小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,列方程1135=2x+55,解得:x=540 (教师板演)
师:以上两种方法,大家比较、体会一下,我们为什么有时要用列方程的方法来解决实际问题呢?列方程有什么优越性?
生3:列方程就是直来直往。
师:非常棒,列方程是顺向思考,而算数方法是逆向思考,较繁琐,且有时易出错,所以才需要学习:一元一次应用题(教师板书课题)
师:有的同学习惯了算数方法,不愿意列方程,但有的实际问题数量关系比较复杂,用算数方法不易解决,如下面问题„„
(设计意图:根据新课程的理念,本节课创造性的使用教材,以学生熟悉的背景引入,具有较强的感染力和吸引力教学内容并不陌生,关键是要学生清楚问什么要用列方程来解决问题,列方程比直接算数列式有何优越性,小学中的算术可以吗?问什么要换个角度研究呢?)
二、故事的发展——怎样列方程
师:参观完大桥后,在途中我们遇到一位老大爷正在吃力地拉着一辆装满大米和面粉的手推车上坡,几位同学立即上前帮助。有个同学问道:车上的面粉一袋重量为多少呢?(引出问题)
问题2:一辆手推车装满时,可装半袋面粉加180斤大米,或者4袋面粉加5斤大米,求一袋面粉的重量?
师:谁能很快的用算术方法解决?(生思考)
师:能否通过列方程解决呢?生1:设一袋面粉的重量为x斤,则 (教师板演)
师:请问等式的左边表示什么量?等式的右边表示什么量?(引导学生解释题意)
生1:都表示手推车满载时的重量 师:这就告诉我们怎样列方程? 师:列方程的实质—分析题意的过程中,先随便“拽出”一个量,根据题意用两种不同的方式表示“它”中间用“等号”连接即可。能理解吗?
生2:随便“拽出”一个可以吗?
师:嗯,那我们来试一试。你说一个量吧! 生2:4袋面粉的重量? 师(板演):4袋面粉的重量可以用4x表示,也可以用 表示, 所以可得方程
师:能否用这种方法来列方程呢?小组合作,列出方程越多越好。(生合作,讨论,得出下了方程)
生(众):表示半袋面粉的重量,得:表示180斤,得:
表示5斤,得:
表示一袋面粉的重量,得:
(师板演,共列出7个方程)
师:黑板上的方程中,那思维快捷,方便? 生3:表示:“满载”
师:这表明,随便“拽出”的一个量是否恰当,对方程的快捷有很大的影响,刚才老师说的“方程的实质”应怎样改进?谁试着说说?
生4:可以把随便“拽出”一个量改为:“选择一个合适的量” 师(板演):归纳总结:“选择一个和适量,两种方法来表示,后用等号去连接。”
师:下面同学们独立求解本题答案,然后小组长检查。
(设计意图:设计随便“拽出”一个量,变式出了问题的一系列不同解法,最终归纳出列方程解实际问题的一般步骤,在解题中有效拓展了学生的思维能力。)
三、故事延伸——参观景点
接下来同学们来到了临沂市展览馆,遇到了下面的问题:
问题3:有5名教师和同学们一起去参观临沂市展览馆,教师按全票价每人7元,学生只收半价。如果门票总价共元,那么有多少名学生?
师:请同学们先独立写出过程
(等绝大多数学生完成后,提问学生解题过程,师板演,引导:怎么设未知数?如何选择一个合适的量?用的是哪两种方法表示的?答案是否正确?)
师:现在同学们能否归纳出列方程解决实际问题的一般步骤呢?组内讨论。
生4:先认真读题,理解题意,找出等量关系 生5:选择一个合适的量,设未知数
生6:用两种不同的方式表示,用等号连接 生7:最后解答
师补充:很好,但有时我们要检查一下所求得的值是否符合实际情况,然后作答。
最后:师生共同总结,①审②设③列④解⑤验⑥答
(设计意图:以故事的形式,较自然的引入新问题,归纳出列方程解决实际问题的一般步骤有效的拓展了学生思维,有利于培养学生的发散性思维能力。)
四、回程途中
师:在回程中,同学们坐在车里,老师出了这样一道题。
问题4:甲、乙两人从A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶,出发经3小时两人相遇。已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地。问甲、乙行驶的速度分别是多少?
师:这是哪种类型的应用题? 生1:相遇问题
生2:行程问题中的相遇问题
师:很好,行程问题,在行程问题中3个基本数量是什么? 生(众):路程、速度、时间 师:有什么关系? 生(众):路程=速度×时间,速度=路程÷时间,时间=路程÷速度
师:对于行程问题,我们通常借助什么数学工具分析数量之间的关系?
生3:画线段图
师:好,那么我们一起画出此题的线段示意图吧!(师生合作,画出线段图)
师:如何设未知数?
生4:设甲的速度为x千米/时。 师:恩,乙的速度如何表示呢?
生4:因为3小时乙比甲多行了90千米,所以1小时比甲多行了30千米,即乙的速度可表示为(x+30)千米/时。
师:非常好,可是选择哪个量,列方程呢?路程?速度?还是时间?
组1:我们组选择A、B两地之间的路程,得:4(x+30)=3(x+x+30)(师板演) 组3:我们组选择相遇前甲行驶的路程:3x=1×(x+30) (师板演) 组4:我们组选择相遇前乙行驶的路程:3(x +30)=4(x+30)-3x (师板演) (师组织全班学生讨论)
师:解完此题,看看有何启发?小组讨论。
师总结:①在本题中,线段图可以使我们更简明地理清实际问题中的数量关系②一题多解,开阔了我们的视野③此题,速度为所求,用x表示,时间给出具体值,是已知;则可用路程来列方程。即在行程问题中:已知一个量,设出一个量,剩下一个量列方程。
反思:以故事为主线,对问题进行拓展,变式练习,拓展视野,同题归类。
问题5:学习了以上知识,你是不师想大展身手呢?
将学生分成两组:组
1、组
3、组5为一大组,组
2、组
4、组6为一大组(也可男生、女生)以竞争的形式完成课后三道练习题。
过程略„„
设计意图:通过分组竞争的形式完成习题,目的师激发和调动学生学习数学的积极性,使学生进一步掌握应用题的分析思路和解决方法,通过习题的讲评,达到查漏补缺的目的。
五、小结
师:通过本节课的学习,你有哪些收获? 生:„„
设计意图:引导学生对所学知识、方法惊醒归纳,总结
使学生体会列方程解应用题的优越性,列方程的实质,掌握其中的规律。
教后反思:
① 小学里,学生接触过应用题,在初中阶段,有的学生还是钟情于算术方法。本节课让学生真正领略方程的代数思维不同于算数思维。
② 以外出游览的故事为主线,突出课堂的故事性 ③ 一题多解,同题归类,拓展了学生的思维能力
④ 渗透助人为乐的德育目标,体现了数学教学的人文性
一元一次方程教案 篇3
1、阅读课本 。
2、完成以下学习任务:
(1)章前图中的汽车匀速行驶途经王家庄、青山、秀水三地,时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。求王家庄到翠湖的路程?
①列算式用算术方法解决这个实际问题:____________________
②用方程来解决这个实际问题:先画示意图:
再找相等关系来列方程: (小组交流,讨论多种方法)
(2)方程的概念:___________________________
判断以下式子哪些是方程?是的画
3+1=4; ;
(3)根据下列问题列方程:
①用一根长24cm的铁丝围成一个正方形,设正方形的边长是x cm,则可列方程:________
②一台计算机已使用1700小时,预计每月再使用150小时,经过x 月这台计算机的使用时间达到规定的检修时间2450小时,则可列方程:____________________
③某校女生占全体学生数的52℅,比男生多80人,设这个学校有x 名学生,则可列方程:___________________
④课本 的三道练习题: (完成后小组批改)
(4)一元一次方程的概念:___________________________注意:是整式方程。
(5)什么叫做解方程:____________________________
(6)什么叫做方程的解?__________________________
(7)括号里的数( =3, =4, =-4)是方程 的解有____________
归纳: 设未知数 列方程
实际问题一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
初一数学《一元一次方程》教案设计
教学目标:进一步认识方程,理解一元一次方程的概念,会根据题意列简单的一元一次方程。
认识方程的解的概念。
掌握验根的方法。
体验用尝试法解一元一次方程的思想方法。
重点:一元一次方程的概念
难点:尝试检验法
一元一次方程教案 篇4
一。教学目标:
1。知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。
3。情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。
二。教学的重点与难点:
1。重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。
2。难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。
1。创设情景:
(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)
老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程。
老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?
(2)未知数的次数为1;
(3)是一个整式。
3。例题讲解:
例1判断如下的式子是一元一次方程吗?
(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由。)
提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号
(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)
1)。在我们前面学过的知识中,什么知识是关于有括号的。
2)。复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。
3)。问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。
4)。问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。
6)。系数化为1,运用了等式的性质。
(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式。)
方程(1)该怎样解?由学生独立探索解法,并互相交流。
(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)
(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)
2。预习下一节课的内容,
3。复习此节课的内容,并完成一下两道思考题。
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
(2) 该怎么求解?
一元一次方程教案 篇5
《解一元一次方程
(一)——合并同类项》说课稿
尊敬的各位评委老师,大家好!
我是今天的 号选手,今天我说课的内容是:人教版义务教育教科书七年级上册第三章第二节第一课时的内容《解一元一次方程
(一)——合并同类项》。接下来我将从以下五个方面说说我对本节课的理解、分析与设计。分别是说教材,说教法,说学法,说教学过程,说板书设计。
一、说教材
(一)教材地位和作用
本节课内容的地位:本课是在上章《整式的加减》和《从算式到方程》基础上,进一步学习合并同类项在解方程中的应用。
本节课不仅学习数学知识,更重要的是学习数学思想方法,经历“列方程解决实际问题”的过程,培养学生归纳、概括的能力。
根据教材的特点,依据学生已有的知识和认知结构、心理特征,以及新课标的三维目标要求,制定如下教学目标:
1、知识技能:找等量关系列一元一次方程;用合并同类项的方法解一元一次方程。
2、过程方法:通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。
3、情感态度价值观:通过背景资料的情境感受数学文明。进一步认识解方程的基本变形,感悟解方程过程中的转化思想。
(二)教学重点与难点
依据教学目标和学生已有的知识水平,我将本节课教学的 教学重点确定为:用合并同类项的方法解一元一次方程。
教学难点确定为:找等量关系列一元一次方程解决实际问题。
二、说学情
学生在第二章《整式》中“整式的加减”的第一课时已经接触并掌握了合并同类项,故本节课只是把合并同类项运用在一元一次方程中,针对学生而言,本节课的掌握并不难。本节课由简单入手,经过学生的自主探究合作交流等活动激发学生的学习热情。
三、说教法和学法
1、说教法
数学是培养和发展人的思维的重要学科,在教学中,不仅要使学生“知其然”,更要的使学生“知其所以然”,并培养“知所以然”的方法。
结合本课特点和教学目标,在教学过程中主要使用探究式教学,师生互动等手段。并且充分利用多媒体课件等教学手段创设教学情境,引导学生观察、探索、发现、归纳来激发学生学习兴趣,以利于突破教学重点和难点,提高课堂教学效益。
2、说学法
素质教育要求我们不但要学好知识,更要学会学习,学会终身学习的方法,在教学中特别重视学法的指导:
1、兴趣是最好的老师,利用中亚细亚数学家阿尔-花拉子米的问题调动学生的学习积极性,激发学生的学习兴趣;
2、通过整式的加减运用于解一元一次方程,实现对知识的迁移。
四、说教学过程
基于上述教学理念和教学目标的要求,本课设计了如下的教学过程:(一)复习旧知,情境导入
首先复习等式的两条性质,并让同学们利用等式的性质解简单的一元一次方程。然后以阿尔-花拉子米的《对消与还原》引入,侧重于感受数学文化,从而激发同学们的求知欲。引出本节课题用合并同类项的方法解一元一次方程。(二)探索用合并同类项的方法解一元一次方程
通过引例根据“总量=各部分分量之和”的等量关系列方程,并且通过适当的语言提示,我采取了一系列的问题串,引导学生体验探求解决问题的思想方法。从而得出用合并同类项解一元一次方程的步骤,即合并同类项,系数化为1。(三)深入探究,练习巩固
对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计如下练习题:
第一组基础练习。出示四组计算题,巩固用合并同类项的方法解一元一次方程;
第二组创新应用。通过生产洗衣机的问题,加强一元一次方程与生活的联系,使学生进一步体会一元一次方程作为实际问题的数学模型的作用。
练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
(四)概括总结,提炼升华
首先,让学生自己回顾本节课的学习过程从而引导学生做出本节课小结,归纳解方程的方法及步骤。通过学生的自我反思,将知识条理化、系统化,书写规范化。
五、说板书设计
板书既是一节课学生学习内容的精华,也是整个内容各部分内在结构的直观反映。根据本节课教学内容的特点,我的板书设计是这样的:
我力求用简洁的文字表述本节课的要点:用合并同类项的方法解一元一次方程。帮助学生理清思路,整体把握本课内容。
以上是我对这节课的理解与设计,如有不当之处请各位老师给予批评指导。谢谢大家!
一元一次方程教案 篇6
教学目标。
知识技能。
通过探索球赛积分与胜负场数之间的数量关系,进一步体会一元一次方程是解决实际问题的数学模型。
数学思考。
2、认识到由实际问题得到的方程的解要符合实际意义。
解决问题。
对于实际问题能够进行观察思考,并转化为数学问题,然后找到解决问题的关键——利用方程模型列出方程,进而解决问题。
情感态度。
增强学生运用数学知识解决实际问题的意识,激发学生学习数学的热情。
重点。
把实际问题转化为数学问题,会用列方程求出问题的解,并会进行推理判断。
难点。
教学流程。
活动流程图。
活动内容和目的。
活动1 观看球赛片段。
活动2认识球赛积分表提出问题。
活动3对问题进行分解。
活动4解决问题。
活动5问题深入化。
创设情境,激发学生学习欲望,引入新课。
展示积分表,学生观察,培养学生的观察思考能力。
引导、分析,为解决问题建立数学模型。
利用数学模型解决实际问题,实现“问题——数学——问题”。
进一步培养学生利用数学模型解决实际问题的能力。
教学过程。
问题与情境。
师生行为。
设计意图。
[活动1]。
展示篮球赛片段,引出积分表问题。
教师:操作课件,播放篮球赛片段。
学生:欣赏球赛。
创设情境,激发学生的学习欲望。
[活动2]。
展示课本96页中赛季全国男篮甲a联赛常规赛最终积分榜。提出问题:。
(1)列式表示积分与胜场数之间的数量关系;。
(2)某队的胜场总积分能等于它的负场总积分吗?
教师:说明积分规则。
学生:观察表格。
教师在学生自由观察表格并发表意见的基础上引导学生观察表格中横、纵所隐藏着的信息,并建立数学模型。
教师重点关注:。
(1)胜场积分+负场积分=总积分。
(2)解决问题的关键:胜一场积几分,负一场积几分。
在观察表格中培养学生的观察能力,引导学生用数学的方法去观察、思考问题,实现“问题——数学”,激发学生的求知欲。
让学生明确总积分是如何得出的,建立数学模型,并找到解决问题的关键。
[活动3]探究:。
胜一场积几分,负一场积几分。
学生继续观察表格,教师提问题:。
你选择表格中哪一行能说明负一场积几分呢?
学生探究交流得:。
从最后一行数据可以发现:负一场积1分。
教师继续提问:。
胜一场积几分呢?
学生探究交流。
学生可能会用算术法得出胜一场积2分,这时教师应关注:。
1、引导学生通过列一元一次方程,用解方程的方法得到,为最后问题的拓展奠定基础。
培养学生观察能力的同时,帮助学生建立数学模型,让。
问题与情境。
师生行为。
设计意图。
[活动4]解决问题。
(1)列式表示积分与胜场数之间的数量关系.
(2)某队的胜场总积分等于它的负场总积分吗?
教师:以上的分析得出的结论是:。
胜一场积2分,负一场积1分。
学生分组讨论交流解决问题(1)。
教师应关注:。
(1)负场数=比赛场数-胜场数。
(2)总积分=胜场积分+负场积分。
(3)问题变式:列式表示积分与负场数之间的数量关系。
学生分组讨论交流解决问题(2)。
教师应关注:。
(2)方程的解与实际问题的关系。
在学生与他人交流的过程中获得解决问题的方法,同时也展示自己的解答,既训练了学生的表达能力,也增强了合作交流地信心,营造了良好的学习氛围,使所有学生都能在数学学习中树立自信心,养成思考习惯,增强交流的勇气。
[活动5]。
1、探究。
如果删去积分榜的最后一行,你还能解决这两个问题吗?
2、小结、作业p100t89。
教师提出问题。
教师应关注:。
教师提示:。
可利用各队胜一场积分相等或利用各队负一场积分相等,任选两个胜、负场数不相同的队即可列方程解决。
学生课后思考完成。
教师:通过这节课的学习,你有哪些收获?
学生举手发表自己的想法。
教师应关注:。
通过探究使学生明白在解决问题的过程中体会到解决问题是可以有不同策略的,每一个人都应有自己对问题的理解,并在此基础上形成自己解决问题的基本策略。
通过学生回顾感悟,进一步理解一元一次方程与实际问题的联系,形成一种解决问题的思考方法。
设计说明:通过引导学生观察积分表,从中读取信息,让学生体会到数学源于生活并应用于生活,实现“问题——数学——问题”的数学模型,让学生感受到数不就在我们身边,明白方程是解决实际问题的一般模型。
注:本教学设计是云梦县道桥中学夏辉老师在“湖北省xx年初中数学使用新教材暨全国全省一等奖教师优质课展示活动”中的展示课中的教学设计,课堂教学效果较好。
一元一次方程教案 篇7
2.4再探实际问题与一元一次方程
-----销售中的盈亏(第一课时)
一。 教学任务分析
教
学
目
标
知识技能
使学生根据商品销售问题中的数量关系找出等量关系,列出方程,掌握商品盈亏的求法。
教学
思考
1.会将实际问题转化为数学问题,通过列方程解决问题。
2.体会数学的应用价值。
解决
问题
会设未知数,并能利用问题中的相等关系列方程,通过分析解决销售中的。盈亏问题,进一步了解用方程解决实际问题的基本过程。
情感
态度
通过学习更加关注生活,增强用数学的意识,从而激发学习数学的热情。
重
点
让学生知道商品销售中的盈亏的算法。
难点
弄清商品销售中的“进价”“售价”及“利润””利润率”的含义和它们之间的等量关系。
二。课前准备
教具
学具
补充材料
课件
铺垫练习 课堂练习 拓广延伸练习
三.教学过程设想
教师活动
学生活动
设计意图
一。创设情境,引入新课
前面我们结合实际问题讨论了如何分析数量
关系,利用相等关系列方程以及如何解方程,
可以看出方程是分析和解决问题的一种很有用
的数学工具,本节课我们就来探究如何用一元
一次方程解决实际问题。
学生回忆、猜想
激起学生主动回
忆、联想和学习欲
望。
二。师生互动,课堂探究
(出示课件)
教师先介绍图片,再提问
问题一:某商店在某时间以每件60元的价格
卖出两件衣服,其中一件盈利25%,另一件亏
损25%,卖出这两件衣服总的是盈利还是亏损,
或是不盈不亏?请同学们估算卖这两件衣服的盈亏情况。
学生观察、合
作交流、讨论、
发表看法
培养学生学会合
作交流,善于听取
他人见解和敢于发
言,让学生大体估
算身边的实际问题
,可激发学习兴趣
和探究的主动性。
问题二:渐进给出,教师因情引导,并板书
利润=进价×利润率
如果一件商品的进价是40元,
(1) 如果卖出后盈利25%,那么该商品的
利润怎样算?
(2) 如果卖出后亏损25%,那么该商品的
利润怎样算?
(3)那么利润、进价、利润率有什么关系?
学生合作交流
讨论、归纳、发
表意见
让学生结合生活
经验,由身边熟悉
实际的问题构建数
学模型,培养学生
会用数学方法解决
实际问题,和由特
殊到一般,概括能
力、学生感到好学
,进而乐学,从感
性上自然地熟悉销
售中的等量关系,
并逐步突破重难点
,为以后问题打下
基础。
问题三:渐近给出,教师因情引导,并板书
利润=售价-进价
或 利润+进价=售价
(1)小卖部老板的面包进价为0.80元/个,
卖给同学们1元/个,老板获取利润怎样算?
(2)因而利润、售价、进价的关系又如何呢?
问题四:教师逐步给出,并引导学生根据问题
二、三中的等量关系来回答,解答,最后给出解
题步骤,并板书。
思考:盈利25%、亏损25%的意义?
引导学生得出:盈利25%,即这件商品的销售利润值(售价—进价)是商品进价的25%,亏损25%,即这件商品的销售亏损值(进价—售价)是商品进价的25%。
问题①:你能从大体上估算卖这两件衣服的盈亏情况吗?
问题②:如何说明你的估算是正确的呢?
问题③:如何判断是盈还是亏?
问题④:两件衣服的进价、售价分别是多少?如何设未知数?相等关系是什么?
问题⑤:商品销售中的进价、 售价、 利润、利润率有何关系?
巡视学生完成情况,给予辅导,最后给出解题
步骤。
三。归纳总结。
学生合作、交
流、讨论、思考
、补充解答过程
让学生学会回顾
已有知识,学会分
析解决实际问题,
养成好动脑、动手
、合作学习的习惯
,体验成功感,以
突破重难点,达到
教学目标。
四。知识拓展,教师给出问题:
(1) 汕头琴行同时出售两台不同钢琴,每台售价为960元,其中一台盈利20%,另一台亏损20%。这次琴行是赢利还是亏损,或是不盈不亏?
(2)某商店对购买大件商品实行分期付款,明明的爸爸买了一台9000元的电脑,第一个月付款30℅,以后每月付款450元,问明明的爸爸需几个月付清余下的款?
学生独立思考
并完成、展示
及时巩固所学知
识
五。回顾与小结
1.能理解商品销售中的基本概念及相等关系
,熟练地应用“利润=售价-进价、
利润=进价×利润率”
来寻找商品中的相等关系
2.能联系以前研究过的问题,加深理解用一
元一次方程解决实际问题的一般步骤。
六。拓展延伸题。(略)
学生看黑板、
屏幕、教材、记
录
回顾所学知识,
学会梳理、概括、
总结。
七。作业布置
教材第97页 第3、题
学生记录
对已学知识强化
巩固
一元一次方程教案 篇8
一、教学目标
1、知识技能目标:
(1)、了解“去括号”是解方程的重要步骤。
(2)、准确而熟练地运用去括号法则解带有括号的一元一次方程。
2、能力目标
(1)学会对所学过的知识进行整理和归纳;进一步发展学生抽象概括的能力。
(2)准确而熟练地运用去括号法则解带有括号的方程。
(3)学会利用列一元一次方程去解决有关数学问题,进一步发展学生的实践能力。
3、情感目标
(1)通过问题的探究,激发学生的好奇心和求知欲,让学生主动参与教学活动,从而让学生形成主动了解数学、应用数学的态度。
(2)通过合并同类项、移项、去括号的法则的复习,引导学生对知识的整理和归纳,并在运用数学知识解决问题的活动中让学生获取成功的体验,从而建立学习的自信心。
二、教学重点
重点:了解“去括号”是解方程的重要步骤。
难点:括号前是“-”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项。
三、教学过程
【活动一】温故而知新(多媒体展示)
填 空
1.去括号法则是: 负变正不变 ;
2.化简下列各式:
(1)a (b+c)= ab+ac ;
(2) 7(x-1)= 7x-7 ;
(3) -2(x+3)=-2x-6 ;
(4) -(x-1.5)=-x+1.5 ;
3.合并同类项法则: (同类项)系数相加,字母(部分)不变 ;
4.合并同类项。
(1)、 2x-3x= -x ;
(2) 、3x-2(x-1.5)= x+3 ;
(3)、 2a+3(5-4a)= 15-10a ;
(4)、-3[1-3(x-1)]= 9x-12 ;
5.解一元一次方程的一般步骤是: 移项、合并同同类项、系数化为1; 6.方程5x-2x=9的解是 x=3 ;
7.方程8x-19=6x-9的解是 x=5 ;
8. 说说下列这个方程和我们以前学的方程有什么不同?你会解下列方程 吗?
3x-7(x-1)=3-2(x-3)
出示课题:3.3解一元一次方程(二)---去括号
【活动二】探究新知(多媒体展示)
1.P96.问题:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
◆你会用方程解决这个问题吗?
分析:设上半年每月平均用电x度,
则下半年每月平均用电 (x-2000 度;
上半年共用电 6x 度;
下半年共用电 6(x-2000)度。
根据全年用电15万度,可列方程
6x+6(x-2000)=150000 。
去括号,得: 6x+6x-12000=150000 ,
移项,得: 6x+6x=150000+12000
合并同类项,得:12x=1620000 ,
系数化为1,得 : x=13500 。
由上可知,这个工厂上半年每月平均用电13500度
2.思考:本题还有其他列方程的方法吗?
用其他方法列出的方程应该怎样解?
3. ◆小结:目前我们解含有括号的一元一次方程的一般步骤是:
去括号——移项——合并同类项——系数化为一
【活动三】范例学习(多媒体展示)
例1:解方程 3x-7(x-1)=3-2(x+3)。
解:去括号,得:
移项,得:
合并同类项,得:
系数化为1,得 :
【活动四】随堂练习(多媒体展示)
1 解下列方程
(1). 5x+(2-4x)=0 (2).8y-3(3y+2)=6
(3).4x+3(2x-3)=12-(x+4) (4).1+2[1-3(x-1)]=4x
◆小结。 在同一个方程中如果遇到多层括号一般由里到外,逐层去括号。
【活动五】新知应用,拓展提升。(练习册P49—P50)(多媒体展示)
1.方程4(2-x)-3(x+1)=6的解是 ( C )
A. x=7; B. C. D.x=-7
2.若方程3x+(2a+1)=x-(3a+2)的解是0,则a的值等于( D )
A. B. C. D. 3.代数式5a+4与3(a+4)互为相反数,则a的值是 ( B )
A. -1 ; B. -2; C. 1 ; D. 2.
4.目前我省小学和初中在校生共136万人,其中小学在校生人数比初中生在校生人数的2倍少2万人,目前我省初中在校生有 46 万人。
5.(1)若x=4时,代数式5(x+b)-10与(b+4)x的值相等,则b= 6 。
(2)当m= 16 时,方程5x+4=4x-3和2(x+1)-m=-2(m-2)的解相同。
6、 列方程求解:
(1)当x= 0 时,代数式 2(3x+7)和 14-10.5x的'值相等?
(2)、当y= 10 时,代数式2(3y+4)的值比5(2y-7)的值大3?
【活动六】总结提炼:(多媒体展示)
1.说说你的收获
2. 目前我们解含有括号的一元一次方程的一般步骤是:
去括号——移项——合并同类项——系数化为1
3.去括号时要注意什么?注意:
(1)当括号前是“-”号,去括号时,各项都要变号。
(2)括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号。
(3)在同一个方程中如果遇到多层括号一般由里到外,逐层去括号。 4.你还有何疑惑?
【巩固练习】 (多媒体展示)
A组 解方程:
(1)5(x+2)=2(5x-1) (2)4x+3=2(x-1)+1
(3)(x+1)-2(x-1)=1-3x (4)2(x-1)-(x+2)=3(4-x)
B组:已知 A= 3x+2, B=4+2x
① 当x取何值时, A=2B;
② 当x取何值时, 3A=1-2B
C组 列方程求解:
(1)当x取何值时,代数式4x-5与3x-6的值互为相反数?
(2)一架飞机在两城之间飞行,风速为24千米/时。顺风飞行需要2小时50分,
逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程。
一元一次方程教案 篇9
一、教学目标 :
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳的概念
3、积累活动经验。
二、重点和难点
重点:归纳的概念
难点:感受方程作为刻画现实世界有效模型的意义
三、教学过程
1、课前训练一
(1)如果 | | =9,则 = ;如果 2 =9,则 =
(2)在数轴上距离原点4个单位长度的数为
(3)下列关于相反数的说法不正确的是( )
A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等
C、0的相反数是0
D、互为相反数的两个数的和为0(字母表示为 、 互为相反数则 )
E、有理数的相反数一定比0小
(4)乘积为1的两个数互为 倒数 ,如:
(5)如果 ,则( )
A、 , 互为倒数 B、 , 互为相反数 C、 , 都是0 D、 , 至少有一个为0
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过 周后树苗长高到1米,依题意得方程( )
A、 B、 C、 D、 00
2、由课本P149卡通图画引入新课
3、分组讨论P149两个练习
4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为 米,那么长为( +25)米,依题意可列得方程为:( )
A、 +25=310 B、 +( +25)=310 C、2 [ +( +25)]=310 D、[ +( +25)] 2=310
课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?
解:设每个练习本要 元,则每个笔记本要 元,依题意可列得方程:
6、归纳方程、的概念
7、随堂练习PO151
8、达标测试
(1)下列式子中,属于方程的是( )
A、 B、 C、 D、
(2)下列方程中,属于的是( )
A、 B、 C、 D、
(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?
解:设甲队胜了 场,则平了 场,依题意可列得方程:
解得 =
答:甲队胜了 场,平了 场。
(4)根据条件“一个数 比它的一半大2”可列得方程为
(5)根据条件“某数 的 与2的差等于最大的一位数”可列得方程为
四、课外作业 P151习题5.1
它山之石可以攻玉,以上就是范文为大家带来的4篇《七年级数学一元一次方程及其解法复习教案》,能够帮助到您,是范文最开心的事情。
相信《一元一次方程教案》一文能让您有很多收获!“幼儿教师教育网”是您了解幼儿园教案,工作计划的必备网站,请您收藏yjs21.com。同时,编辑还为您精选准备了一元一次方程教案专题,希望您能喜欢!