初中数学教案。
老师就如春蚕吐丝般为学生奉献自己,对于新手教师,提前编写教案是很重要的。教案是教师教学的一大助推工具。一篇好的教案有哪些特点?幼儿教师教育网推荐你不妨读一下初中数学教案,欢迎你阅读与收藏。
初中数学教案 篇1
今天我说课的题目是“多项式除以单项式”。本节课选自北京师范大学出版社出版的《义务教育课程标准实验教科书》七年级(下)。这一节课是本册书第一章第九节第二课时的内容。下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程 的设计向大家介绍一下我对本节课的理解与设计。
一、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标 、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、多项式除以单项式在整式的运算中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力,在解决问题的过程中了解数学的价值,发展“用数学”的信心。运算能力的培养主要是在初一阶段完成。多项式除以单项式作为整式的运算的一部分,它是整式运算的重要内容之一,它是整个初中代数的重要部分。
2、就第一章而言, 多项式除以单项式是本章的一个重点。整式的运算这一章,多项式除以单项式是很重要的一块,整式的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在整式范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此乘法的运算是本章的关键,而除法又是学生接触到的较复杂的整式的运算,学生能否接受和形成在整式的运算中转化思考方式及推理的方法等,都在本节中。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标 、重点和难点。
新课程标准是我们确定教学目标 ,重点和难点的依据。重点是多项式除以单项式的法则及其应用。多项式除以单项式,其基本方法与步骤是化归为单项式除以单项式,因此多项式除以单项式的运算关键是将它转化为单项式除法的运算,再准确应用相关的运算法则。
难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于 ,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。
二、教材处理
本节课是在前面学习了单项式除以单项式的基础上进行的,学生已经掌握同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法等知识,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的课件引例,让学生自主参与,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程 的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法
在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程 中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程 中在掌握知识同时、发展智力、受到教育。
四、教学过程 的设计。
1、回顾与思考,通过单项式除以单项式法则的复习,完成四道单项式除以单项式的练习题,为本节课探索规律,概括多项式除以单项式的法则做好铺垫。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个尝试练习启发学生自主解答,使学生该过程中体会多项式除以单项式规律。由于采用了较灵活的教学手段,学生能够积极的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出多项式除以单项式的法则。
3、例题解析,通过课件生动形象的课件,引导学生尝试完成例题,加深对多项式除以单项式的法则的理解与应用。
4、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由易而难,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用小组合作交流形式,使课堂气氛活跃,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
5、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。教学目标 :
1.理解和掌握多项式除以单项式的运算法则。
2.运用多项式除以单项式的法则,熟练、准确地进行计算.
3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.
4.培养学生耐心细致、严谨的数学思维品质.
重点、难点:
(1)多项式除以单项式的法则及其应用.
(2)理解法则导出的根据。
课时安排: 一课时.
教具学具: 多媒体课件.
授课人及时间:关龙 二〇〇七年三月二十九日
教学过程 :
1.复习导入
(l)单项式除以单项式法则是什么?
(2)计算:
1)–12a5b3c÷(–4a2b)=
2)(–5a2b)2÷5a3b2 =
3)4(a+b)7 ÷ (a+b)3 =
4)(–3ab2c)3÷(–3ab2c)2 =
找规律:怎样寻找多项式除以单项式的法则?
尝试练习引入分析
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2.例题解析
例3 计算:见课本P49
(1) 尝试练习
(2) 提问:哪个等号是用到了法则?
(3) 在计算多项式除以单项式时,要注意什么?
注意:(l)先定商的符号;
(2)注意把除式(¸后的式子)添括号;
要求学生说出式子每步变形的依据.
(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.
练习设计:
(1)随堂练习P50
(2)联系拓广P51
3.小结
你在本节课学到了什么?
(1)单项式除以单项式的法则
(2)多项式除以单项式的法则
正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。
4.作业
P50 知识技能
5.综合练习(课件)
初中数学教案 篇2
教学目标
1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2, 能区分两种不同意义的量,会用符号表示正数和负数;
3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点 正确区分两种不同意义的量。
知识重点 两种相反意义的量
教学过程(师生活动) 设计理念
设置情境
引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些“以前学过的数”够用了吗?下面的例子
仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多
地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.
这阶段主要是让学生学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习 教科书第5页练习
小结与作业
课堂小结 围绕下面两点,以师生共同交流的方式进行:
1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2,正数就是以前学过的'0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。
本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。
作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要
初中数学教案 篇3
[教学目标]
1、体会并了解反比例函数的图象的意义
2、能列表、描点、连线法画出反比例函数的图象
3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质
[教学重点和难点]
本节教学的重点是反比例函数的图象及图象的性质
由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点
[教学过程]
1、情境创设
可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?
2、探索活动
探索活动1反比例函数y?
由于反比例函数y?
要分几个层次来探求:
(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);
(2)方法与步骤——利用描点作图;
列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。
描点:依据什么(数据、方法)找点?
连线:怎样连线?——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。
探索活动2反比例函数y??2的图象.x2的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需x2的图象.x
可以引导学生采用多种方式进行自主探索活动:
2的图象的方式与步骤进行自主探索其图象;x
222(2)可以通过探索函数y?与y??之间的关系,画出y??的图象.xxx
22探索活动3反比例函数y??与y?的图象有什么共同特征?xx(1)可以用画反比例函数y?
引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.(即双曲线)反比例函数y?
k(k≠0)的图象中两支曲线都与x轴、y轴不相交;并且当k?0时,图象在第一、第x
初中数学教案 篇4
教学目标:
1、了解公式的意义,使学生能用公式解决简单的实际问题;
2、初步培养学生观察、分析及概括的能力;
3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议:
一、教学重点、难点
重点:通过具体例子了解公式、应用公式。
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的.辨证思想。
四、教法建议
1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例:
一、教学目标
(一)知识教学点
1、使学生能利用公式解决简单的实际问题。
2、使学生理解公式与代数式的关系。
(二)能力训练点
1、利用数学公式解决实际问题的能力。
2、利用已知的公式推导新公式的能力。
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践。
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。
二、学法引导
1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。
2、学生学法:观察→分析→推导→计算。
三、重点、难点、疑点及解决办法
1、重点:利用旧公式推导出新的图形的计算公式。
2、难点:同重点。
3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差。
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。
七、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏。
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题。
板书:公式
师:小学里学过哪些面积公式?
板书:S=ah
(出示投影1)。解释三角形,梯形面积公式
【教法说明】让学生感知用割补法求图形的面积。
初中数学教案 篇5
一、学习目标:
1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;
2、会运用两数差的平方公式进行计算。
二、学习过程:
请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:
(一)探索
1、计算: (a - b) =
方法一: 方法二:
方法三:
2、两数差的平方用式子表示为_________________________;
用文字语言叙述为___________________________ 。
3、两数差的平方公式结构特征是什么?
(二)现学现用
利用两数差的平方公式计算:
1、(3 - a) 2、 (2a -1) 3、(3y-x)
4、(2x – 4y) 5、( 3a - )
(三)合作攻关
灵活运用两数差的平方公式计算:
1、(999) 2、( a – b – c )
3、(a + 1) -(a-1)
(四)达标训练
1、、选择:下列各式中,与(a - 2b) 一定相等的是( )
A、a -2ab + 4b B、a -4b
C、a +4b D、 a - 4ab +4b
2、填空:
(1)9x + + 16y = (4y - 3x )
(2) ( ) = m - 8m + 16
2、计算:
( a - b) ( x -2y )
3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?
(四)提升
1、本节课你学到了什么?
2、已知a – b = 1,a + b = 25,求ab 的值
初中数学教案 篇6
一、学习目标:
1、掌握二次根式的运算方法,明确数的运算顺序、运算律及乘法公式在根式的运算中仍然适用。
2、正确运用二次根式的性质及运算法则进行二次根式的混合运算。
二、学习重点:
正确运用二次根式的性质及运算法则进行二次根式的混合运算。
学习难点:二次根式计算的结果要是最简二次根式。
三、过程
知识准备
1、满足下列条的二次根式是最简二次根式。
2、回忆有理数,整式混合运算的顺序。
3、回忆并整理整式的乘法公式。
方法探究1
⑴(512+23)x15
⑵(3+10)(2-5)
归纳:
尝试练习:
⑴(3+22)x6
⑵(827-53)6
⑶(6-3+1)x23
⑷(3-22)(33-2)
⑸(22-3)(3+2)
⑹(5-6)(3+2)
方法探究2
⑴(3+2)(3-2)
⑵(3+25)2
归纳:
尝试练习:
⑴(5+1)(5-1)
⑵(7+5)(5-7)
⑶(25-32)(25+32)
⑷(a+b)(a-b)
⑸(3-2)2
⑹(32-45)2
⑺(3-22)(22-3)
⑻(a-b)2
⑼(1-23)(1+23)-(1+3)2
⑽(3+2-5)(3+2+5)
例题解析
1、计算:(22-3)2011(22+3)2012。
2、若x=10-3,求代数式x2+6x+11的值。
3、若x=11+72,y=11—72,求代数式x2-xy+y2的值。
内反馈
1、计算12(2-3)=
2、计算⑴(2+3)(2-3)=
⑵(5-2)2010(5+2)2011=
3、计算:
⑴12(75+313-48)
⑵(1327-24-323)12
⑶(23-5)(2+3)
⑷(5-3+2)(5+3-2)
⑸(312-213+48)÷23
4、已知a=3+2,b=3-2,求下列各式的值。
⑴a2-b2
⑵1a-1b
⑶a2-ab+b2
5、若x=3+1,求代数式x2-2x-3的值。
初中数学教案 篇7
【教学目标】
1进一步认识方程及其解的概念。
2理解一元一次方程的概念,会根据简单数量关系列一元一次方程。 3体验用尝试、检验解一元一次方程的思想与方法。
【教学重点】
一元一次方程的概念和解法贯穿整章,因此“一元一次方程的概念”与“尝试检验法”求解是本节教学的重点。
【教学难点】
用尝试、检验的方法解一元一次方程的过程比较复杂,是本节教学的难点。
【学习准备】
1.下面哪些式子是方程?
(1)3
(2)1;
(2)x31;
(3)3x5;
(4)2xy4;
(5)x31;
(6)3x14.
2.方程与等式有什么联系与区别?
方程是解决实际问题的一个重要数学模型,需要我们进一步学习研究。
【课本导学】
思考一阅读并解答课本第114页“合作学习”的三个问题,思考:
1.列方程就是根据问题中的相等关系,写出含有未知数的等式。
(1)原价为50元的衣服,按8折销售,售价是多少元?原价若为x元呢?
(2)你能举例说明你对“物体在水下,水深每增加10米,物体承受的压力就增加
(3)张明投进x个,那么“小杰投进的球的个数”可以怎样表示?“3人一共投进的球数”怎样表示?
你是怎么理解“三人平均每人投进14个球”这句话的?
思考二观察你所列的方程,这些方程之间有哪些共同的特点?请思考:
1.你可以从哪些角度对这些方程进行观察呢?说说你的想法。
2.具有“合作学习”中所列方程一样特点的方程叫做一元一次方程,你能说说这个名称中“元”和“次”的含义吗?[练习]完成课本第115页课内练习
1.『归纳』判断一个方程是不是一元一次方程应抓住哪几个关键特点?
思考三阅读课本第114页倒数3行至第115页正文结束,并思考下面的问题:
1.(1)如果一个数是方程有什么关系?
(2)如果一个数是方程350应该是多少?
(3)要判断一个数是不是方程3m?2?1?m的解,你会怎么做?2.对方程2x12
14的解,这个数代入方程的左边计算得到的值与14 3 1
x500的解,这个数代入方程的左边计算得到的值10 2x12
14进行尝试求解时,你认为x必须是整数吗
x可以取21吗20呢?x可以取10或者比10还小的值吗?为什么?说说你的想法。
[练习]完成课本第115页课内练习
2.『归纳』1.检验一个数是不是一元一次方程的解的步骤有哪些?
2.用尝试检验的方法解一元一次方程,你觉得关键的步骤有哪些?【盘点收获】
【学习检测】
1.下列说法正确的是()
(a)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程
2.下列式子中,属于一元一次方程的是()(a)5x 1
(b)ab8(c)1257(d)5x82x9 3
3.设某数为x,根据下列条件列出求该数的方程:
(1)某数加上1,再乘以2,得6.
(2)某数与7的和的2倍等于10.
(3)某数的5倍比某数小3.
4.某校初一年级328名师生乘车外出春游,己有2辆校车可乘坐64人,还需租用44座的客车多少辆?
设还需租用x辆,则可列出方程44x+64=328.
(1)写出一个方程,使它的解是
2.【作业布置】略
【课后反思】
课堂教学总是在“预设”与“生成”间交融进行,如何根据学情做好充分的预设,又根据课堂生成灵活应变,这既能反映教师的专业素养,又能展示教师的教学功底.反刍本课,笔者认为还有以下几方面值得反思与改进:
1.忽略课堂“火花”,错失追问良机
在交流对方程的共同特征探讨的环节,有一个同学直接说出了“一元一次方程”的名称.【片断实录】
师:讨论好了吧.哪个小组先来说说你们所归纳的特点.生8:这些等式都含有未知数的,用x或y来表示.师(板书):嗯,都含有未知数,这个未知数呢,有的地方是x,有的地方是y.还有呢?生8:还有黑板上的所有等式都是一元一次方程.
师(惊喜):嗯,你都知道了所有的等式都是我们今天接下来要具体研究的一元一次方程,这位同学已经预习了呢.我们看,刚才这位同学归纳了:都含有未知数.那么请同学们看得更仔细一点,未知数在这里具有什么特征呢?
不难看出,笔者在这里没有很好地抓住学生的课堂即时生成资源,用一句“嗯,……,这位同学已经预习了呢.”轻轻带过,仍然拉着学生回到了预设的轨道“……,请同学们看得更仔细一点,未知数在这里具有什么特征呢?”如果当时直接问她“那么请你讲讲什
初中数学教案 篇8
教学目标:
1.借助数轴了解相反数的概念,知道互为相反数的位置关系.
2.给一个数,能求出它的相反数.
教学重点:理解相反数的意义.
教学难点:理解和掌握双重符号简化的规律.
教与学互动设计:
(一)创设情境,导入新课
活动请一个学生到讲台前面对大家,向前走5步,向后走5步.
交流如果向前走为正,那向前走5步与向后走5步分别记作什么?
(二)合作交流,解读探究
1.观察下列数:6和-6,2 和-2 ,7和-7, 和- ,并把它们在数轴上标出.
想一想(1)上述各对数有什么特点?
(2)表示这四对数的点在数轴上有什么特点?
(3)你能够写出具有上述特点的n组数吗?
观察像这样只有符号不同的两个数叫相反数.
互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.
总结在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.
2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.
(三)应用迁移,巩固提高
【例1】填空
(1)-5.8是的相反数,的相反数是-(+3),a的相反数是;a-b的相反数是,0的相反数是.
(2)正数的相反数是,负数的相反数是,的相反数是它本身.
【例2】 下列判断不正确的有()
①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.
A.1个B.2个C.3个D.4个
【例3】 化简下列各符号:
(1)-[-(-2)];(2)+{-[-(+5)]};
(3)-{-{-…-(-6)}…}(共n个负号).
【归纳】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.
【例4】 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?
(四)总结反思,拓展升华
【归纳】 (1)相反数的概念及表示方法.
(2)相反数的代数意义和几何意义.
(3)符号的化简.
(五)课堂跟踪反馈
夯实基础
1.判断题
(1)-3是相反数.()
(2)-7和7是相反数.()
(3)-a的相反数是a,它们互为相反数.()
(4)符号不同的两个数互为相反数.()
2.分别写出下列各数的相反数,并把它们在数轴上表示出来.
1,-2,0,4.5,-2.5,3
3.若一个数的相反数不是正数,则这个数一定是()
A.正数 B.正数或0
C.负数 D.负数或0
4.一个数比它的相反数小,这个数是()
A.正数 B.负数
C.非负数 D.非正数
5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.
提升能力
6.若a与a-2互为相反数,则a的相反数是.
7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“
初中数学教案 篇9
一、教材分析
本节课主要讲解的是单项式乘以单项式,是在前面学习了幂的运算性质的基础上学习的,学生学习单项式的乘法并熟练地进行单项式的乘法运算是以后学习多项式乘法的关键,单项式的乘法综合用到了有理数的乘法、幂的运算性质,而后续的多项式乘以单项式、多项式乘以多项式都要转化为单项式的乘法,因此单项式的乘法将起到承前启后的作用,在整式乘法中占有独特的地位。
二、教学目的
1. 使学生理解单项式乘法法则,会进行单项式的乘法运算 。
2. 通过单项式乘法法则的推导,发展学生的逻辑思维能力。
教学目的的第一条的确定是考虑到学生对单项式的概念、有理数乘法、幂的运算都较为熟练,在此基础上导出的单项式乘法法则学生能够达到“理解”的要求,同时由于单项式乘法的所有内容已包含在这节课中,学生能按照一定的步骤完成单项式的乘法运算,据此确定了教学目的的第一条。而单项式法则的导出过程是发展学生逻辑思维能力的极好素材,据此确定了教学目的的第二条。
三、教学重点、难点:
重点:掌握单项式乘法法则。
(这是因为要熟练地进行单项式的乘法运算,就得掌握和深刻理解运算法则,对运算法则理解得越深,运算才能掌握的越好)
难点:多种运算法则的综合运用
(这是因为单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辨认和区别各种不同的运算及运算所使用的法则,易于将各种法则混淆,造成运算结果错误。)
四、教学方法
本节课在教学过程的不同阶段采用不同的教学方法,以适应教学的需要。
1、在新课学习阶段的单项式的乘法法则的推导过程中,采用了引导发现法。通过教师设计的问题,引导学生将需要解决的问题转化成用已学过的知识可解决的问题,让学生即掌握了新的知识,又培养了学生探索探索问题的能力,充分体现了教师的主导作用和学生的主体作用,使学生始终处在观察思考之中。引导发现法的使用对实现教学目的的第二条起了很重要的作用,突出了本节课的重点。
2、在新课学习的例题讲解阶段,采用了讲练结合法。对例题的学习,围绕问题进行,通过教师引导、学生观察、思考,寻求解决问题的方法,在解题的过程中展开思维。与此同时还进行多次有较强针对性的练习,分散难点,对学生分层进行训练,化解难点,并注意及时矫正,使学生在前面出现的错误不致于影响后面的解题,为后面的学习扫清障碍,通过例题的学习教师给出了解题规范,并注意对生良好学习习惯的培养。
3、在归纳小结这个阶段采用师生共同总结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误。
4、本节课的教学内容丰富,训练量大,利用投影仪,增大课堂容量,提高课堂教学效率。
五、教学过程
本节课的教学过程主要包括以下五个环节:1、 创设问题情境 2、新课学习 3、反馈练习 4、小结 5、作业布置。
(1) 创设问题情境
本节课通过一实际问题,引入课题,这样的目的是通过问题情境的创设,激发学生求知的欲望,通过问题1、问题2的设置进而明确本节课的学习内容。
(2) 新课学习
新课学习包括单项式乘法法则的推导和例题讲解。
① 单项式乘法法则的推导
由于八年级学生还不具备独立获取知识的能力,单项式乘法法则的推导必须在教师的指导下完成,为此我设计了两个引例。引例1中的两个问题就是引导学生进行观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘以单项式的运算法则。引例2让学生动手尝试,在尝试成功的基础上再提出问题3,由问题3引导学生进行归纳,最后得出单项式乘以单项式的法则。从而实现理解单项式乘法法则的这一教学目的,同时在上述过程中,让学生感受到在研究问题中所体现的“将未知转化为已知”的数学思想,通过尝试活动,使学生体会到从“特殊到一般”的认识规律,从而启迪了学生的思维,使学生亲身感受到数学知识的产生和发展过程,发展了学生的逻辑思维能力,较好地实现了教学目的第二条,教学的重点内容学生得以掌握。
在此基础上,我又设计了一组简单的练习,由学生回答,强化对单项式的乘法法则的理解和运用,发现问题及时纠正。
② 例题讲解
本着循序渐进的原则,对例题按按照逐步增加运算种类进行了编排,使之由浅入深,由易到难,由单一到综合。我总共设计了三道例题。
(3) 反馈练习
根据本节课的教学目的我又设计了反馈练习,以了解学生对本节课所学的内容的掌握情况,并再一次对出现的问题进行矫正,使学生对单项式的乘法运算的熟练程度得以加强。
(4) 小结
本节课的小结由师生共同完成,先由教师提问,学生回答,然后教师归纳形成知识系统,通过小结,使学生明确单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,引起学生对单项式乘法中系数与指数运算易混淆等问题的重视。
(5) 布置作业
数量不多的作业,既能让学生能对本节知识掌握得更加牢固,又能有充裕的时间拓展自己的视野。
初中数学教案 篇10
教学目标
1笔寡生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2迸嘌学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学重点和难点
重点和难点:正确地求出代数式的值
课堂教学过程设计
一、从学生原有的认识结构提出问题
1庇么数式表示:(投影)
(1)a与b的和的平方;(2)a,b两数的平方和;
(3)a与b的和的50%
2庇糜镅孕鹗龃数式2n+10的意义
3倍杂诘2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)
某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50蔽颐墙上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值闭饩褪潜窘诳挝颐墙要学习研究的内容
二、师生共同研究代数式的值的意义
1庇檬值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值
2苯岷仙鲜隼题,提出如下几个问题:
(1)求代数式2x+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)
例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70
注意:如果代数式中省略乘号,代入后需添上乘号
例2根据下面a,b的值,求代数式a2-的值
(1)a=4,b=12,(2)a=1,b=1
解:(1)当a=4,b=12时,
a2-=42-=16-3=13;
(2)当a=1,b=1时,
a2-=-=
注意(1)如果字母取值是分数,作乘方运算时要加括号;
(2)注意书写格式,“当……时”的字样不要丢;
(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果
三、课堂练习
1(1)当x=2时,求代数式x2-1的值;
(2)当x=,y=时,求代数式x(x-y)的值
2钡盿=,b=时,求下列代数式的值:
(1)(a+b)2;(2)(a-b)2
3钡眡=5,y=3时,求代数式的值
答案:1.(1)3;(2);2.(1);(2);3..
四、师生共同小结
首先,请学生回答下面问题:
1北窘诳窝习了哪些内容?
2鼻蟠数式的值应分哪几步?
3痹“代入”这一步应注意什么”
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.
五、作业
当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);
今天的内容就介绍到这里了。
初中数学教案 篇11
平均数
第一课时
素质教育目标
(一)知识教学点
1.使学生初步了解统计知识是应用广泛的数学内容.
2.了解平均数的意义,会计算一组数据的平均数.
3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数.
(二)能力训练点
培养学生的观察能力、计算能力.
(三)德育渗透点
1.培养学生认真、耐心、细致的学习态度和学习习惯.
2.渗透数学来源于实践,反地来又作用于实践的观点.
(四)美育渗透点
通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美.
重点·难点·疑点及解决办法
1.教学重点:平均数的概念及其计算.
2.教学难点:平均数的简化计算.
3.教学疑点:平均数简化公式的应用,a如何选择.
4.解决办法:分清两个公式,公式②的运用要选择一个适当的a.
教学步骤
(一)明确目标
在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)
为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:
甲78686591074
乙9578768677
1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?
教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.
对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.
(二)整体感知
解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.
(三)教学过程
这节课我们首先来学习平均数.
1.(出示幻灯片)请同学看下面问题:
某班第一小组一次数学测验的成绩如下:
869110072938990857595
这个小组的平均成绩是多少?
教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识.
2.平均数的概念及计算公式
一般地,如果有n个数.
那么①
叫做这n个数的平均数,读作“x拨”.
这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法.学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性.教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义.
3.平均数计算公式①的应用
例1一个地区某年1月上旬各天的最低气温依次是(单位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它们的平均气温.
让学生动手计算,以巩固平均数计算公式(一名学生板演)
教师应强调:①解题格式.②在统计学里处理的数据包括负数.③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同.
例2从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):
210208200205202218206214215207195207218192202216185227187215
计算它们的平均质量.(用投影仪打出)
引导学生两人一组完成计算,然后一起对答案.由于数据较大,计算较繁,可能会出现不同的答案.正好为下面提出简化计算公式作好铺垫.
教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法.
学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样.
讲完例2后,教师指出几点:常数a的取法不是惟一的;读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同.
通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受.
3.推导公式②
一般地,当一组数据的各个数值较大时,可将各数据同时减去一个适当的常数a,得到
,
那么,
因此,
即②
为了加深学生对公式②的认识,再让学生指出例2的、、各是什么?(学生回答)
课堂练习:
教材P148中~P149中1,2,3
(四)总结、扩展
知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛.本章将要学习的是统计学的初步知识.
2.求n个数据的平均数的公式①.
3.平均数的简化计算公式②.这个公式很重要,要学会运用.
方法小结:通过本节课我们学到了示一组数据平均数的方法.当数据比较小时,可用公式①直接计算.当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算.
八、布置作业
教材P153中1、2、3、4.
九、板书设计
初中数学教案 篇12
教学目标
1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行运算。依据法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对法则的理解。法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。(励志的句子 www.djz525.com)
2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
教学设计示例
(第一课时)
教学目标
1.使学生在了解意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据法则,熟练进行运算;
难点:有理数乘法法则的理解.
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.
四、小结
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.
五、作业
感谢您阅读“幼儿教师教育网”的《初中数学教案1500字通用12篇》一文,希望能解决您找不到幼儿园教案时遇到的问题和疑惑,同时,yjs21.com编辑还为您精选准备了初中数学教案专题,希望您能喜欢!